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Abstract—The aim of this paper is to examine a set of wavelet compressed data size. In alossy compression scheme, the image
functions (wavelets) for implementation in a still image compres- compression algorithm should achieve a tradeoff between com-
sion system and to highlight the benefit of this transform relating f pression ratio and image quality [4]. Higher compression ratios

to today's methods. The paper discusses important features o il d | . i d vi i d
wavelet transform in compression of still images, including the Will produce lower image quality and vice versa. Quality an

extent to which the quality of image is degraded by the process compression can also vary according to input image character-
of wavelet compression and decompression. Image quality is istics and content.
measured objectively, using peak signal-to-noise ratio or picture  Transform coding is a widely used method of compressing

quality scale, and subjectively, using perceived image quality. . inf fi | t f b d . t
The effects of different wavelet functions, image contents and Image information. in a transtorm-based compression system

compression ratios are assessed. A comparison with a discrete-coiwo-dimensional (2-D) images are transformed from the spa-
sine-transform-based compression system is given. Our resultstial domain to the frequency domain. An effective transform

provide a good reference for application developers to choose a || concentrate useful information into a few of the low-fre-
good wavelet compression system for their application. quency transform coefficients. An HVS is more sensitive to en-
Index Terms—Discrete cosine transforms, image coding, trans- ergy with low spatial frequency than with high spatial frequency.

form coding, wavelet transforms. Therefore, compression can be achieved by quantizing the co-
efficients, so that important coefficients (low-frequency coef-
|. INTRODUCTION ficients) are transmitted and the remaining coefficients are dis-

carded. Very effective and popular ways to achieve compression

I N RECENT years, many St_UdieS have been made Bfimage data are based on the discrete cosine transform (DCT)
wavelets. An excellent overview of what wavelets havgnd discrete wavelet transform (DWT)

brought to the fields as diverse as biomedical applications,Current standards for compression of still (e.g., JPEG [5])

wireless communications, computer graphics or turbulen%d moving images (e.g., MPEG-1 [6], MPEG-2 [7]) use DCT
IS gll\./en.ln [1].f|mage| com_g:essmr:j@ one of t_he r:nost V'S'bkﬁaich represents an image as a superposition of cosine func-
applications o wave ets_. € rapid increase in the range liohs with different discrete frequencies [8]. The transformed
use of electronic imaging justifies attention for systematlﬁ:]

desi fani . ¢ qf iding t nal is a function of two spatial dimensions, and its compo-
esign ot an image compression system and 1or providing théns are called DCT coefficients or spatial frequencies. DCT

|nge qualllty_lrlle_eded n dlffe_rent alpphcanons. ¢ il coefficients measure the contribution of the cosine functions at
typlcg st mage contains a large gmount of spatia "ifferent discrete frequencies. DCT provides excellent energy

dundancy in plain areas where adjacent picture elemepts (p'xgl?mpaction, and a number of fast algorithms exist for calcu-
pels) have almost the same value_s_. It means that the pixel ValHﬁﬁg the DCT. Most existing compression systems use square
are hlghly gorrelated [2]. In addmgn, a st|II.|mage can CoONy T plocks of regular size [5]-[7]. The image is divided into
tain subjecuvg redundancy, which is determined by Propertigs s of V' x NV samples and each block is transformed inde-
of a human V|_sual _system (HV.S) [3]. An HV.S presents son}?e dently to giveV x N coefficients. For many blocks within
t‘?'er?‘”ce to cﬁ;tomon, depending upon the image content at"ﬂ‘(fimage, most of the DCT coefficients will be near zero. DCT
weww(;g co dndltlontls. Consg quetntcljy, pg(i]s TK/Sé n9|t| aIV\éaé/st l?ﬁ itself does not give compression. To achieve the compression,
rﬁprg_ﬁuce exgc y as origina Ie' an ed V\g nod o€ ®BCT coefficients should be guantized so that the near-zero co-
E”? ! dere(rj]ce ett\)/veﬁn orllgl_nal |nge Sn repro uge 'Malicients are set to zero and the remaining coefficients are rep-

€ rﬁ. undancy ( Ot_ statlfstlr::a.an su d]eCt'\_'r? cr;n € remoY‘Sgented with reduced precision that is determined by quantizer
;o a% ieve fcompressmfn of the 'mage atla. . he asiC Measiilfie The guantization results in loss of information, but also
or the pertormance of a compression ago.nF m 1S COmpreiﬁ'compression. Increasing the quantizer scale leads to coarser
sion ratio (CR), defined as a ratio between original data size aﬂﬁ’antization, which gives high compression and poor decoded

image quality.

'\éllar;]usdcript trﬁcelivted FetbFrugry 27, 21(;0%: []rce)\lliS?ﬁ_November 26, 2000. tAgst;aclThe use of uniformly sized blocks simplified the compression
pupblishea on the Internet February , . IS paper was presented al . . .
IEEE International Symposium on Industrial Electronics, Bled, Slovenia, Juﬁg?gt_em’ bUt_ it does not take into account the wrggular shapes
11-16, 1999. within real images. The block-based segmentation of source
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Fig. 1. Scaling and wavelet function.

efficient coding, but requires more computational power. Image Il. WAVELET TRANSFORM
distortion is less annoying for small than for large DCT blocks, Wavelet transform (WT) represents an image as a sum of

but coding efficiency tends to suffer. Therefore, most ex'_St'rWaveIet functions (wavelets) with different locations and scales
systems use blocks of:8 8 or 16 16 pixels as a compromise 1 71 Ay decomposition of an image into wavelets involves a
between coding efficiency and image quality. pair of waveforms: one to represent the high frequencies cor-

In recent times, much of the research activities in imagesponding to the detailed parts of an image (wavelet function
coding have been focused on the DWT, which has becorm® and one for the low frequencies or smooth parts of an image
a standard tool in image compression applications becaysealing function®).
of their data reduction capability [10]-[12]. In a wavelet Fig. 1 shows two waveforms of a family discovered in the late
compression system, the entire image is transformed ar@B80s by Daubechies: the right one can be used to represent de-
compressed as a single data object rather than block by blegked parts of the image and the left one to represent smooth
as in a DCT-based compression system. It allows a uniforparts of the image. The two waveforms are translated and scaled
distribution of compression error across the entire image. DWh the time axis to produce a set of wavelet functions at dif-
offers adaptive spatial-frequency resolution (better spatial réerent locations and on different scales. Each wavelet contains
olution at high frequencies and better frequency resolution tae same number of cycles, such that, as the frequency reduces,
low frequencies) that is well suited to the properties of an HV$e wavelet gets longer. High frequencies are transformed with
It can provide better image quality than DCT, especially onshort functions (low scale). Low frequencies are transformed
higher compression ratio [13]. However, the implementation @fith long functions (high scale). During computation, the an-
the DCT is less expensive than that of the DWT. For examplalyzing wavelet is shifted over the full domain of the analyzed
the most efficient algorithm for 2-D & 8 DCT requires only function. The result of WT is a set of wavelet coefficients, which
54 multiplications [14], while the complexity of calculating themeasure the contribution of the wavelets at these locations and
DWT depends on the length of wavelet filters. scales.

A wavelet image compression system can be created by ) ] )
selecting a type of wavelet function, quantizer, and statisticdl Multiresolution Analysis
coder. In this paper, we do not intend to give a technical WT performs multiresolution image analysis [18]. The result
description of a wavelet image compression system. We usgdmultiresolution analysis is simultaneous image representa-
a few general types of wavelets and compared the effetitsn on different resolution (and quality) levels [19]. The reso-
of wavelet analysis and representation, compression rafiatjon is determined by a threshold below which all fluctuations
image content, and resolution to image quality. According tr details are ignored. The difference between two neighboring
this analysis, we show that searching for the optimal waveletsolutions represents details. Therefore, an image can be rep-
needs to be done taking into account not only objective picturesented by a low-resolution image (approximation or average
quality measures, but also subjective measures. We highliglatrt) and the details on each higher resolution level. Let us con-
the performance gain of the DWT over the DCT. Quantizers feider a one-dimensional (1-D) functigfz). At the resolution
the DCT and wavelet compression systems should be tailotedel j, the approximation of the functiofi(t) is f;(¢). At the
to the transform structure, which is quite different for the DCTiext resolution leve}j + 1, the approximation of the function
and the DWT. The representative quantizer for the DCT isfd¢) is f;+1(t). The details denoted by;(¢) are included in
uniform quantizer in baseline JPEG [5], and for the DWT, it ig;+1(¢): fj+1(t) = f,;(¥) + d;(¢). This procedure can be re-
Shapiro’s zerotree quantizer [15], [16]. Hence, we did not talkeated several times and functi¢(t) can be viewed as
into account the influence of the quantizer and entropy coder, in n
order to accurately characterize the difference of compression f) = f;)+ Z dy(t). (1)
performance due to the transforms (wavelet versus DCT). =y
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Fig. 2. Two-channel filter bank.

Similarly, the space of square integrable functidi§R) can The choice of filter not only determines whether perfect re-
be viewed as a composition of scaling subspag¢esnd wavelet construction is possible, it also determines the shape of wavelet
subspace$/’; such that the approximation ¢f¢) at resolution we use to perform the analysis. By cascading the analysis filter
J(f;(t)) is in V; and the detailsl;(¢) are inW;. V; andW; bank with itself a number of times, a digital signal decompo-
are defined in terms of dilates and translates of scaling furgition with dyadic frequency scaling known as DWT can be
tion ® and wavelet functiont: V; = {®(2/z — k)|k € Z} formed. The mathematical manipulation that effects synthesis is
andW; = {¥(2'z — k)|k € Z}. V; andW; are localized in called inverse DWT. An efficient way to implement this scheme
dyadically scaled frequency “octaves” by the scale or resolusing filters was developed by Mallat [19]. The new twist that
tion parametee’ (dyadic scales are based on powers of twayavelets bring to filter banks is connection between multireso-
and localized spatially by translatidn The scaling subspacelution analysis (that, in principle, can be performed on the orig-
V; must be contained in all subspaces on higher resolutiansl, continuous signal) and digital signal processing performed
(V; C Vj41). The wavelet subspacég; fill the gaps between on discrete, sampled signals.

successive scale$;, = V; ® W;. We can start with an ap- - pwT for an image as a 2-D signal can be derived from

proximation on some scalé, and then use wavelets to fill in 1.p pwT. The easiest way for obtaining scaling and wavelet
the missing details on finer and finer scales. The finest resolimnction for two dimensions is by multiplying two 1-D func-

tion level includes all square integrable functions tions. The scaling function for 2-D DWT can be obtained by
oo multiplying two 1-D scaling functions®(z, v) = ®(z)®(y).

L*(R)=Vy + @ W;. (2) Wavelet functions for 2-D DWT can be obtained by multiplying

j=0 two wavelet functions or wavelet and scaling function for 1-D

. . . . analysis. For the 2-D case, there exist three wavelet functions
Since® € V, C Vi, it follows that the scaling function for that scan details in horizontal@(z, ) — (z)U(y),

multiresolution approximation can be obtained as the SOlu“c\)/grticaI WD (g ) = W(z)d(y), and diagonal directions:
to a two-scale dilational equation

WU (2, y) = W(x)¥(y). This may be represented as a
O(z) = Z ar(k)®(2z — k) (3) four-channel perfect reconstruction filter bank as shown in
Fig. 3. Now, each filter is 2-D with the subscript indicating the
) o type of filter (HPF or LPF) for separable horizontal and vertical
for some suitable sequence of coefficieas k). Once® has omponents. The resulting four transform components consist
been found, an associated mother wavelet is given by a similgf-5|| possible combinations of high- and low-pass filtering in
looking formula the two directions. By using these filters in one stage, an image
o can be decomposed into four bands. There are three types of
W)= Z i (k)2 (22 — k). ) detail images for each resolution: horizontal (HL), vertical
» (LH), and diagonal (HH). The operations can be repeated on
Some effort is required to produce appropriate coefficient sgre low—low band using the second stage of identical filter

k

quences:y, (k) andagy (k) [17]. bank. Thus, a typical 2-D DWT, used in image compression,
_ will generate the hierarchical pyramidal structure shown in
B. Discrete Wavelet Transform Fig. 3(b). Here, we adopt the term “number of decompositions”

One of the big discoveries for wavelet analysis was that pdtf) to describe the number of 2-D filter stages used in image
fect reconstruction filter banks could be formed using the coeffilecomposition.
cient sequencesy, (k) andag (k) (Fig. 2). The input sequence Wavelet multiresolution and direction selective decomposi-
x is convolved with high-pass (HPF) and low-pass (LPF) filtion of images is matched to an HVS [20]. In the spatial domain,
tersay (k) anday (k) and each result is downsampled by twathe image can be considered as a composition of information
yielding the transform signalsy andxy. The signal is recon- on a number of different scales. A wavelet transform measures
structed through upsampling and convolution with high and logray-level image variations at different scales. In the frequency
synthesis filters (k) andsy, (k). For properly designed filters, domain, the contrast sensitivity function of the HVS depends on
the signal: is reconstructed exactly (= z). frequency and orientation of the details.
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Fig. 3. (a) One filter stage in 2-D DWT. (b) Pyramidal structure of a wavelet decomposition.

lll. I MAGE QUALITY EVALUATION When the input signal is aR-bit discrete variable, the variance

The image quality can be evaluated objectively and subje [ energy can be replaced by the maximum input symbol energy
R _1)2. For the common case of 8 bits per picture element of

tively [21]. Objective methods are based on computable dist ; .
tion measures. A standard objective measure of image qualit)'ﬂgut image, the peak SNR (PSNR) can be defined as

reconstruction error. Suppose that one has a system in which an 2552
inputimage element blocke(n)}, n =10, 1, ..., N—1isre- PSNR(dB)= 10log, <W§) . (8)
produced agy(n)}, n =0, 1, ..., N —1. The reconstruction

errorr(n) is defined as the difference betweefn) andy(n)  SNR is not adequate as a perceptually meaningful measure of
picture quality, because the reconstruction errors in general do
r(n) = z(n) — y(n). (5) not have the character of signal-independent additive noise, and
the seriousness of the impairments cannot be measured by a
The variances of(n), y(n), andr(n) areoZ, o7, ando?. Inthe  simple power measurement [22]. Small impairment of an image
special case of zero-means signals, variances are simply equalio lead to a very large value of and, consequently, a very
respective mean-square values over appropriate sequence leggitéll value of PSNR, in spite of the fact that the perceived image

M quality can be very acceptable. In fact, in image compression
" systems, the truly definitive measure of image quality is percep-
1 tual quality. The distortion is specified by mean opinion score
2 _ - 2 _ .
T M nz::l 2 (n), FEmy on © (MOS) [23] or by picture quality scale (PQS) [24].

In addition to the commonly used PSNR, we chose to use
A standard objective measure of coded image quality #&perception based subjective evaluation, quantified by MOS,
signal-to-noise ratio (SNR) which is defined as the ratiand a perception-based objective evaluation, quantified by PQS.
between signal variance and reconstruction error varianker the set of distorted images, the MOS values were obtained
[mean-square error (MSE)] usually expressed in decibels (dB)m an experiment involving 11 viewers. The viewers were al-
lowed to give half-scale grades. The testing methodology was
02> — 10log < o2 ) e the double-stimulus impairment scale method with five-grade
- 10 .

SNR(dB)= 101log,, <a_12 MSE impairment scale described in [25]. When the tests span the full
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(b)

(© (d)
Fig. 4. Frequency content of test images. (a) Peppers. (b) Lena. (c) Baboon. (d) Zebra.

range of impairments (as in our experiment), the double-stirobtain negative values (meaningless results). It was the reason

ulus impairment scale method is appropriate and should be ustbdt we had to use subjective evaluation (our test includes low
The double-stimulus impairment scale method uses referempelity images) but PQS helped us in some phases of our re-

and test conditions which are arranged in pairs such that the fgsstarch work.

in the pair is the unimpaired reference and the second is the same

sequence impaired. The original source image without compres- IV. DWT IN IMAGE COMPRESSION

sion was used as the reference condition. The assessor is aik

to vote on the second, keeping in mind the first. The method

uses the five-grade impairment scale with proper description forThe fundamental difficulty in testing an image compression

each grade: 5—-imperceptible; 4—perceptible, but not annoyiriystem is how to decide which test images to use for the evalu-

3-slightly annoying; 2—annoying; and 1-very annoying. At thations. The image content being viewed influences the percep-

end of the series of sessions, MOS for each test condition difth of quality irrespective of technical parameters of the system
test image are calculated [9]. Normally, a series of pictures, which are average in terms

of how difficult they are for system being evaluated, has been

ePmage Content

°. . selected. To obtain a balance of critical and moderately crit-
MOS = Z 10 ) ical material we used four types of test images with different
=t frequency content: Peppers, Lena, Baboon, and Zebra. Spectral
wherei is grade ang(¢) is grade probability. activity of test images is evaluated using DCT applied to the

Subjective assessments of image quality are experimentallijole image. DCT coefficients as a result of DCT show fre-
difficult and lengthy, and the results may vary depending ajuency content of the image. Fig. 4 shows the distributions of
the test conditions. In addition to MOS, we used PQS methadiage values before and after DCT. The distribution of DCT co-
ology proposed in[24], [26]. The PQS has been developed in thificients depends on image content (white dots represent DCT
last few years for evaluating the quality of compressed imagesefficients, arrows indicate the increase of horizontal and ver-
It combines various perceived distortions into a single quantieal frequency). Moving across the top row, horizontal spatial
tative measure. To do so, PQS methodology uses some of fileguency increases. Moving down, vertical spatial frequency
properties of HVS relevant to global image impairments, sudhcreases. Images with high spectral activity are more difficult
as random errors, and emphasize the perceptual importancéoof compression system to handle. These images usually con-
structured and localized errors. PQS is constructed by regresn large number of small details and low spatial redundancy.
sions with MOS, which is a five-level grading scale. PQS closely Choice of wavelet function is crucial for coding performance
approximates the MOS in the middle of the quality range. Far image compression [27]. However, this choice should be ad-
very-high-quality images, it is possible to obtain values of PQ8sted to image content [28]. The compression performance for
larger than 5. At the low end of the image quality scale, PQS camages with high spectral activity is fairly insensitive to choice
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of compression method (for example, testimage Baboon), [38taling and wavelet functions for different filter orders have dif-
On the other hand, coding performance for images with mofiérent shapes [Fig. 5(a)—(d)]. Scaling and wavelet functions in
erate spectral activity (for example, test image Lena) are mdhee CW family for all filter orders have very similar shapes
sensitive to choice of compression method. The best way {&iig. 5(e) and (f)]. Scaling and wavelet functions for decom-
choosing wavelet function is to select optimal basis for imagessition and reconstruction in the BW family can be similar or
with moderate spectral activity. This wavelet will give satisfyinglissimilar. BW-2.2 is such that decomposition and reconstruc-

results for other types of images. tion functions have different shapes [Fig. 5(g) and (h)], but for
BW-6.8 these functions are very close to each other [Fig. 5(i)
B. Choice of Wavelet Function and ().

) _ o Higher filter orders give wider functions in the time domain

Important properties of wavelet functions in image compregith higher degree of smoothness. Filter with a high order
sion applications are compact support (lead to efficient implgz, pe designed to have good frequency localization, which
mentation), symmetry (useful in avoiding dephasing in imaggreases the energy compaction. Wavelet smoothness also
processing), orthogonality (allow fastalgorithm), regularity, andreases with its order. Filters with lower order have a better
degree of smoothness (related to filter order or filter length). time |ocalization and preserve important edge information.

In our experiment, four types of wavelet families are expayelet-based image compression prefers smooth functions
amined: Haar Wavelet (HW), Daubechies Wavelet (DW)hat can be achieved using long filters) but complexity of
Coiflet Wavelet (CW), and Biorthogonal Wavelet (BW).caiculating DWT increases by increasing the filter length.
Each wavelet family can be parameterized by intejethat Therefore, in image compression application we have to find
determines filter order. Biorthogonal wavelets can use filtefjance between filter length, degree of smoothness, and
with similar or dissimilar orders for decompositioV¢) and  computational complexity. Inside each wavelet family, we can
reconstruction{yr). In our examples, different filter orders areying avelet function that represents optimal solution related

used inside each wavelet family. We have used the followiRg fijter |ength and degree of smoothness, but this solution
sets of wavelets: DWY with N = 1, 2, 3, 4, 5, 6, 10 [17], depends on image content.

CW-N with N = 2, 3,4,5 [17], and BWN».Nd with

(Nr, Nd) = (1,3), (2,2), (3,1), (3,3), (3,5), (6.8), [30. b Number of Decompositions

Daubechies and Coiflet wavelets are families of orthogonal ] ]

wavelets that are compactly supported. Compactly supported N€ guality of compressed image depends on the number of
wavelets correspond to finite-impulse response (FIR) filtef€compositions.f). The number of decompositions determines
and, thus, lead to efficient implementation [29]. Only idedhe resolution of the lowest Igyel in Wavglet domain. If we use
filters with infinite duration can provide alias-free frequency2'@€r number of decompositions, we will be more successful
split and perfect interband decorrelation of coefficients. Sinda resolving important DWT coefficients from less important
time localization of the filter is very important in visual signae€fficients. The HVS is less sensitive to removal of smaller
processing, arbitrarily long filters cannot be used. A maj<5jr‘et"’“IS [31]. ] ) ] o
disadvantage of DW and CW is their asymmetry, which can After decomposing the image and representing it with
cause artifacts at borders of the wavelet subbands. DwVfavelet coefficients, compression can be performed by ig-
asymmetrical while CW is almost symmetrical. Symmetr§°fing allc_:oefflments_belowsome threshold._lr_1ourexpenme_nt,
in wavelets can be obtained only if we are willing to give ufCMPression is obtained by wavelet coefficient thresholding
either compact support or orthogonality of wavelet (exc(rag‘smg a global positive threshold value. All coefﬁ'uents'
for HW, which is orthogonal, compactly supported, and sy __elow some threshold are negle_cted anq compression ratio
metric). If we want both symmetry and compact support iff computed. Compression algorithm provides two modes of
wavelets, we should relax the orthogonality condition and allo@P€ration: 1) compression ratio is fixed to the required level
nonorthogonal wavelet functions. An example is the family gihd threshold value has been changed to achieve required

biorthogonal wavelets that contains compactly supported afflPression ratio; after that, PSNR is computed; 2) PSNR
symmetric wavelets [30]. is fixed to the required level and threshold values has been

changed to achieve required PSNR; after that, CR is computed.

Fig. 6 shows comparison of reconstructed image Lena {256
256 pixels, 8 bit/pixel) for 1, 2, 3, and 4 decompositions (ER

The filter lengthL is determined by filter order, but relation-50: 1). In this example, DW-5 is used. It can be seen that image
ship between filter order and filter length is different for dif-quality is better for a larger number of decompositions. On the
ferent wavelet families. For example, the filter lengthLis= other hand, a larger number of decompositions causes the loss of
2 - N for the DW family andL = 6 - N for the CW family. the coding algorithm efficiency. Therefore, adaptive decompo-
HW is the special case of DW with = 1 (DW-1) andL = 2. sition is required to achieve balance between image quality and
Filter lengths are approximately = {max(2Nd, 2Nr) 4+ 2}, computational complexity. PSNR tends to saturate for a larger
but effective lengths are different for LPF and HPF used for daumber of decompositions [Fig. 7(a)]. For each compression
composition and reconstruction and should be determined fatio, the PSNR characteristic has “threshold” which represents
each filter type. Fig. 5 shows examples of scaling and wavetée optimal number of decompositions. Below and above the
functions from each wavelet family. Filter coefficients for soméhreshold, PSNR decreases. For DW-5 used in this example op-
of the examples from Fig. 5 are given in Table I. In DW, familgtimal number of decompositions is 5 [Fig. 7(b)].

C. Filter Order and Filter Length
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Fig. 5. Scaling and wavelet functions for different wavelet families. (a) DVi¥1= 1, L = 2. (b) DW-2,N = 2, L = 4. (¢) DW-5,N = 5, L = 10.
(d) DW-10,N = 10, L = 20. (6) CW-2,N = 2, L = 12. (f) CW-3, N = 3, L = 18. (g) BW-2.2 for decompN = 2, L(LPF) = 5, L(HPF) = 3.
(h) BW-2.2 for reconsN = 2, L(LPF) = 3, L(HPF) = 5. (i) BW-6.8 for decompN = 6, L(LPF) = 17, L(HPF) = 11. (j) BW-6.8 for recons,
N = 8, L(LPF) = 11, L(HPF) = 17.

The optimal number of decompositions depends on filteletermines the resolution of the lowest level in wavelet domain.
order. Fig. 7(b) shows PSNR values for different filter ordern$ the order of function gives a time window of function larger
and fixed compression ratio (10: 1). It can be seen that as than the time interval needed for analysis of lowest level, the
number of decompositions increases, PSNR is increased upitture quality can only degrade.
some number of decompositions. Beyond that, increasing the
number of decompositions has a negative effect. Higher filter Computational Complexity
e e o e e St Cmpualonl Compety f th vavslet tansor o an
the limiting factor for decomposition. Decisions about thinage size ob x M employing dyadic decomposition is ap-
filter order and number of decompositions are a matter Bfoxmately [32]
compromise. Higher order filters give broader function in the
time domain. On the other hand, the number of decompositions C=16-M?-L-(1-4"7)/3 (10)
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TABLE |
FILTER COEFFICIENTS FORDW-1, DW-2, DW-5, CW-2, CW-3, BW-2.2aND BW-6.8

DW-1 DW-2 DW-5 CW-2 CW-3 BW-2.2 BW-6.8

k a (k) ai(k) a,(k) a;(k) ar(k) ar (k) si(K) (k) sp(k)

0 0.7071 -0.1294 0.0033 -0.0007 -0.0000 0 0 0 0
1 0.7071 0.2241 -0.0126 -0.0018 -0.0001 -0.1768 0.3536 0.0019 0
2 0.8365 -0.0062 0.0056 0.0005 0.3536 0.7071 -0.0019 0
3 0.4830 0.0776 0.0237 0.0011 1.0607 0.3536 -0.0170 0.0144
4 -0.0322 -0.0594 -0.0026 0.3536 0 0.0119 0.0145
5 -0.2423 -0.0765 -0.0090 -0.1768 0 0.0497 -0.0787
6 0.1384 0.4170 0.0159 -0.0773 -0.0404
7 0.7243 0.8127 0.0346 -0.0941 0.4178
8 0.6038 0.3861 -0.0823 0.4208 0.7589
9 0.1601 -0.0674 -0.0718 0.8259 0.4178
10 -0.0415 0.4285 0.4208 -0.0404
11 0.0164 0.7938 -0.0941 -0.0787
12 0.4052 -0.0773 0.0145
13 -0.0611 0.0497 0.0144
14 -0.0658 0.0119 0
15 0.0235 -0.0170 0
16 0.0078 -0.0019 0.
17 -0.0038 0.0019 0

) (b id)

Fig. 6. Reconstructed image Lena; DW-5; €R50:1. (a)J = 1 (PSNR= 8.40 dB). (b)J = 2 (PSNR= 11.76 dB). (c)J = 3 (PSNR= 23.39 dB). (d)
J = 4 (PSNR= 24.40 dB).

whereL and.J are filter length and number of decompositionggiven filter order, while bold type mark the optimal combination
respectively. For simplicity, we consider only the computatioaf filter order and number of decompositions for image Lena (5
required for calculating the wavelet transform. For example, fdecompositions, filter order 5). Similar results were achieved
a 256 x 256 image decomposed usinfg= 5 andL = 10, for other wavelet families and other test images. Table Ill
the complexity will be approximately 3.5 million operationsshows some of the results. For each wavelet family, different
(MOP). filter orders are tested using different test images. For each test
image and each wavelet family, the optimal combination of
filter order and number of decompositions was found (shaded
areas in Table I11).

The choice of optimal wavelet function in an image com- The filter orders which give the best PSNR results inside each
pression system for different image types can be providedwavelet family are different for different test images, except for
a few steps. For each filter order in each wavelet family, tithe BW family where filters with order 2 in decomposition and
optimal number of decompositions can be found. The optimatder 2 in reconstruction (BW-2.2) give the best results for all
number of decompositions gives the highest PSNR valuesiinage types.
the wide range of compression ratios for a given filter order. The comparison of PSNR values of optimal filters (shaded
Table 1l shows some of the results for DW and image Lenareas in Table Ill) from each wavelet family for different test
For lower filter orders, better results are reached with mommages shows that image Peppers (low spectral activity) has the
decompositions than for higher filter orders. The shaded ardaghest PSNR values and image Zebra (high spectral activity)
in Table Il show the optimal number of decompositions for has the smallest PSNR values. PSNR values depend on image

V. DWT COMPRESSIONRESULTS
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PSNR 35 1 introduces a very annoying blocking effect for GRLO: 1. For
@B) 3 — example, PSNR results for test image Baboon show that DW-1
gives similar results as other wavelets, but with respect to
25 - ——101 visual image quality, this wavelet introduce blocking artifacts,
20 | o that cannot be evaluated using PSNR (Fig. 9). Hence, we can
—a— 100:1 conclude that BW-2.2 is the best choice of optimal wavelet
15 4 function, not only according to visual quality (PQS), but also
10 4 according to very low computational complexity (1.4 MOP).
Therefore, if we want to find the best wavelet for some image
5 T T T J T ' ! compression application, we have to take into account visual
0 2 4 5 6 8 10 20 quality [34]. If we consider only the PSNR values, we can make
Number of decompositions wrong decisions. BW-2.2 provides the best visual image quality
for all images. For that reason, BW-2.2 is used in further anal-
@ ysis and comparison with DCT.
PSNR 32 1 The comparative study of wavelet cgt_ﬂer; fqr s;ill images
dB) performed in [13] shows that the set partitioning in hierarchical
trees (SPIHT) coder described in [16] has better performance
31 A than other coders. The SPIHT coder uses 9/7 biorthogonal
ngj wavelet filter (9/7-BW) and 5 decompositions. Therefore,
—d—DW-10 we implemented 9/7-BW in our compression scheme and we
30 - compared compression results with the results achieved with
BW-2.2. Compression results for both wavelets are given in
Table V. From Table V, we can see that PSNR values are better
29 —_— e —— for 9/7-BW for allimages except Peppers. On the contrary, PQS

3 4 5 6 8 10 20
Number of decompositions

(b)

Fig. 7. PSNR for different number of decompositions. (a) DW-5. (b)€R

10:1.

results show that BW-2.2 produces better visual picture quality,
which is of higher importance for the viewer than PSNR values.
Hence, the usage of BW-2.2 in the wavelet coder described in
[13] can improve visual image quality. Once again, we want to
emphasize that PSNR cannot be used as a definitive measure of
picture quality in an image compression system. Additionally,
computational complexity of 9/7-BW is 2.8 MOP, that isg 2

type and cannot be used if we want to compare images wiipre operations compared with BW-2.2, which again proves

different content.

that BW-2.2 is a better choice for wavelet image compression.

Table IV compares PSNR and PQS values of optimal

wavelets (shaded areas in Table Ill) from each wavelet famif)‘/

Comparative Study & x 8 DCT and DWT

for different test images. Table 1l presents a rough comparisonA comparison of PSNR values for 8 8 DCT and DWT
for only three compression ratios. Compression ratios 50 (BW-2.2) is shown in Fig. 10. Compression results for DCT
and 100:1 produce very poor image qualities that canrate taken from [33]. For compression ratios below 30: ¥ 8
be evaluated using PQS. Therefore, Table IV covers low@DCT gives similar results as DWT. For higher compression
compression ratios that can provide useful image qualitieatios (>30: 1) the quality of images compressed using DWT

which can be measured using PQS. Shaded areas showstbw/ly degrades, while the quality of standard DCT compressed
best wavelets according to the PQS values. Examination iofages deteriorates rapidly. Computational complexity for 8
these values reveals that BW-2.2, in most cases (14 out of IDCT is approximately 0.5 MOP [14]. For lower compression
results in better visual quality than other wavelets for all imageatios, DCT should be used, because implementation of DCT is
(BW-2.2 wavelet presents symmetric and smooth function tEfss expensive than that of the DWT. For the higher compression
relatively short support). ratio >30: 1), DCT cannot be used because of very poor image
Fig. 8 compares visual quality of image Lena compressedality.
with optimal wavelet functions from each wavelet family. For higher compression ratios, the compression performance
PSNR values are the same for all images (36 dB), but PQEDWT is superior to that of & 8 DCT and the visual quality
values are different. It means that comparison, which is baseidreconstructed images is better, even if the PSNR are the same.
on PQS, shows different results than comparison based Tmere are noticeable blocking artifacts in the DCT images.
PSNR. The best PQS results from Fig. 8 are achieved usifig. 11 shows the visual quality for DCT and DWT compressed
BW-2.2. Table Ill shows that, for test images Zebra anithages with the same PSNR (26 dB) and reconstruction error
Baboon, the best results are achieved using CW-2 and CWk®, both images. The comparison demonstrates the different
but Table IV shows that the begsual qualityis achieved using nature of reconstruction error in DCT and DWT compression
BW-2.2. The last column in Table Il shows computationadystems. Even for relatively high compression ratis8@: 1),
complexity for each wavelet. It can be seen that DW-1 (HW)WT-based compression gives good results according to both
has the lowest computational complexity. However, DW-tisual quality and PSNR.
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TABLE I

OPTIMAL NUMBER OF DECOMPOSITIONS FORDIFFERENT FILTER ORDERS INDW FAMILY
Wavelsd Compression Ratio R B
Family | Order 31 30:] 50| 100: 1 E=4

35.53 14.76 11.53 342 I

| 36,29 25,68 2379 21.59 4

36,39 25.74 2394 21.87 4]

361K 25.75 396 21.54 )

36,79 1504 11.713 G 5] 2

37.25 25 .86 i R6 21.36 4

2 3718 25.79 23.RQ 21.52 1]

718 25.72 2371 21.313 B

3707 2361 2357 21 04 {1

4 3704 15.2 11.7 051 2

W 3724|2583 338 16.16 3
s 37.16 26.21 24,46 22 09 B

305 26.24 24.53 1018 5

6,5 2613 | 2437 | 2213 f

B 25, | 417 21.82 3

34,65 1515 [ 117 0.52 2

| 36.00 2541 33.20 1646 3

10 3572 2549 | 2385 2181 4

r .'-i-l'-‘ 3_4_I.‘- X3.45% 2141 [a)

35,08 2447 X2aT 2135 L

TABLE Il

PSNR RESULTS INDECIBELS FORDIFFERENT WAVELET FAMILIES AND DIFFERENT COMPRESSIONRATIOS

Peppers Lena Lebra Baboon
3 | |
= ' s
xhie 4 : ? B
n N LIS (L1 - 8r Dl L] ] [ ] 51l | 1981 28
£ -] =
25
el | 37mm | mm | 2wz | vem | ames | 2iw | 2mee | 1026 | 1soo | Eon | EiEs | 2en | e s
ewd |33 [ 230 [ anm | 373a | e | 2ene | aeee | ias | 1635 | mam | miss | mamr | s 2
EEN B R R A T TS RN R ETH R T TR T 14
M. Jrm T ([4.1] (AL 1330 Ih4E JT i3 8] [EE ] ek ZL15 12.57 1 (]

W1 | 96T | JARR | JRTE | ITED | J45F | T30 QOB | 1792 | 188 | FI | XLE) | M.OS L &
CW-1 | IS | JAE | JEIN | 3TTEH | Al | 2TAF ) TRAT | 1785 | 167 | 334 | ILAS | E? 4 il

oW | JEs | Jae | RLED | 3T | 3430 | TLES | 379s | 1793 | 1617 | B | ELTS | WM 4 i
w1 JERE | 33T | JLE | IT46 | TR | 243 ) 3780 | I7FY | 1AM | IB34 | XLTE | 2OBS 4 L4
Ba33 | qLID | IEET | 2309 | ITTE-| 2485 | 2250 )22 | 1TSS | 1AD] | IRTI | Xl | 3RS £ 14
B | 3003 | 3230 | J0TE | J6S4 | Z1IE | ZACLE f 2424 | AT | 145 | WiI0 | W™ | mm : [ 21
Bl | IRET | 1000 | BRIE § ITHE | 3135 | 16 | B0 | 16T | 14w 1lcl:-: 1w | 12es ] &l

On the other hand, PSNR values depend very much on imaggey difficult for the DCT coder to handle, especially for higher
content. PSNR of image Lena is through all compression reempression ratios [Fig. 10(d)]. The reason is that image Ba-
tios for about 3 dB higher than PSNR for image Zebra. The difoon contains a narrow range of luminance levels and a large
ference between PSNR plots for DCT and DWT in Fig. 10(ajumber of details.
and (b) is much larger than the difference between PSNR plotsThe comparison of PSNR and PQS values for a compression
in Fig. 10(c). The reason is different spectral activities of thesatio below 10: 1 is shown in Table VI. For the low compression
three testimages (Fig. 4). Image Zebra has high spectral activitios, 8x 8 DCT and DWT show very similar characteristics
This type of image is less sensitive to the choice of compressiidCT produces slightly better results) for all images.
method than images with low and moderate spectral activity. Measurements based on PQS cannot cover the wide range of
Compression performances for images with moderate spectrampression ratios from 2:1 to 100: 1. PQS quantifies some
activity are sensitive to the choice of compression method.déerceptual characteristics of a compression system, but PQS has
is the reason image Lena is often used in the process of ogtime disadvantages. For higher compression ratios, PQS values
mizing a compression system. The content of image Baboortusn out to be increasingly sharp, fall out of the valid range, and
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TABLE IV
PSNRAND PQS VALUES OF OPTIMAL WAVELETS FROM TABLE Il FORFIXED CRs

Image Peppers Lenm Febra Balenom
CH | Wbt | D | owa | peas | pwes | oows | omeiza | obwas | oowe | meeas | oower | cwa | owas
21 PR | £0.47 | 4900 | 4992 | 4700 | 4705 | 4746 | 36.65 | 657 | 3557 | 3576 | 3663 | 3543

s 547 543 5332 531 . I v 4 538 4,63 450 4.50 4.50 4h3 4.58
PSHE | #1.53 | 4065 | 4227 | 3900 | 3932 | #0004 | 2063 | 295K | 2098 | 2923 | 29.55 | 2696

| pos | a0 | ez S aav | an |EEN 351 | 3ss [EEEY a0 | 3o |pE
vy | P [ 350a [ 3540 [ a6 [ 3234 [ 3280 [ s 25.03 | 25.18 | 2495 | 25.91 | 2607 | 25.69
Pos | 244 | 2 04 | 225 | 234 [PREE| 244 | 24 PEREY| 200 | 293 (BEES
1_““ FENE | 3334 | 3372 | 34.43 | 374 | 3207 | 3251 | 2578 | 23.90 | 2398 | 25.00 | 2528 | 249
pga | 19 | o7 [BEEE ese | o [DEEEN 200 | 2o [EESEN] 17s | ok [P

ia) ib) (c) (d)

Fig. 8. Comparison of optimal wavelet functions for image Lena (PSNB6 dB). (a) Original. (b) DW-5 (PQS: 2.93). (c) CW-3 (PQS= 3.10). (d) BW-2.2
(PQS= 3.20).

{a) i} ch i(d)

Fig. 9. Comparison of visual image quality for the detail from test image Baboon and fixed compression ratio 20: 1. (a) Original. (b) DW-1. (c) CW-3. (d)
BW-2.2.

become meaningless. Thus, we have to use subjective testing to VI. CONCLUSIONS

complete results of visual image quality. The results of subjec-

tive measurements are contained in Table VII. Images are comin this paper, we presented results from a comparative study
pressed using DWT and 8 8 DCT with four different com- of different wavelet-based image compression systems. The ef-
pression ratios: 4:1, 10:1, 30:1, and 50:1 (we have to usdeats of different wavelet functions, filter orders, number of de-
small number of compression ratios to reduce the time need=minpositions, image contents, and compression ratios are ex-
for subjective testing). MOS results show that human observersiined. The final choice of optimal wavelet in image com-
have more tolerance for moderately distorted images than P@8&ssion application depends on image quality and computa-
The results are strongly influenced by image content. MOS itienal complexity. We found that wavelet-based image compres-
cludes psychological effects of the HVS that cannot be includeibn prefers smooth functions of relatively short length. A suit-
in PQS. For HVS, the DWT coder works better than DCT atble number of decompositions should be determined by means
higher compression ratios for all types of images. of image quality and less computational operation. Our results
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TABLE V

PSNRAND PQS \ALUES OF 9/7 BW [13] AND BW-2.2

Image Peppers Lena Zebra Baboon
CR Wavelet 9/7BW | BW-2.2 | 9/7BW | BW-2.2 | 9/7BW | BW-2.2 9/7BW | BW-2.2
21 PSNR | 49.20 | 49.92 47.82 47.46 36.79 35.57 35.69 35.53
: PQS 5.50 5.53 5.48 5.34 4.55 4.56 4.45 4.58
4:1 PSNR | 42.16 42.27 40.18 40.04 29.95 29.78 29.58 28.96
: PQS 4.40 4.52 4.35 4.68 3.52 3.68 3.11 3.19
8:1 PSNR | 36.14 36.19 34.49 34.09 2541 24.95 26.13 25.69
i PQS 2.63 2.94 2.45 2.68 2.47 2.70 2.09 2.25
10:1 PSNR | 3432 3443 32.88 32.51 24.13 23.58 25.31 2491
’ PQS 1.97 2.35 2.05 2.18 2.27 2.52 1.79 1.88
35 4 —e—DCT-Peppers 35 1 ——DCT-Lena
~—&— DWT-Peppers |
30+ 30+ —=—DWT-Lena
m [
=2 z
& 25+ Z 251
17 0
o a
20 - 20 -
15 T v v v T T T T \ 15 T v T T T T v
0 10 20 30 40 50 60 70 80 90 100 0 10 20 30 40 50 60 70 80 90 100
compression ratio compression ratio
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Fig. 10. Comparison of PSNR values for DCT and DWT of test images. (a) Peppers. (b) Lena. (c) Zebra. (d) Baboon.
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show that the choice of optimal wavelet depends on the methbg;ed results for a wide range of wavelets and found that BW-2.2
which is used for picture quality evaluation. We used objeprovides the best visual image quality for different image con-
tive and subjective picture quality measures. The objective méants. Additionally, BW-2.2 has very low computational com-
sures such as PSNR and MSE do not correlate well with syllexity in comparison with the other wavelets. BW-2.2 isused in
jective quality measures. Therefore, we used PQS as an obgtalysis and comparison with DCT. Although DCT processing
tive measure that has good correlation to subjective measwspeed and compression capabilities are good, there are notice-
ments. Our results show that different conclusions about an @fsle blocking artifacts at high compression ratios. However,
timal wavelet can be achieved using PSNR and PQS. Each cddWT enables high compression ratios while maintaining good
pression system should be designed with respect to the charasual quality. Finally, with the increasing use of multimedia
teristics of the HVS. Therefore, our choice is based on PQ®chnologies, image compression requires higher performance
which takes into account the properties of the HVS. We anas well as new features that can be provided using DWT.
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Fig. 11. Reconstructed image and reconstruction error for image Lena (BESARIB). (a) DCT. (b) BW-2.2.

(1]
(2]

(3]
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(6]
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TABLE VI
PSNRAND PQS VALUES FOR COMPRESSIONRATIO BELOW 10: 1

Image Peppers Lena Zebra Baboon
CR | ™™ | DCT | BW-22 | DCT | BW-22 | DCT | BW-22 | DCT | BW-22
2:1 PSNR | 49.90 49.92 47.70 47.46 36.80 35.57 36.50 35.53
' PQS 5.58 5.52 5.53 4.55 4.57 4.56 4.52 4.58
41 PSNR | 42.02 42.27 40.05 40.04 29.5 29.78 29.51 28.96
' PQS 4.56 4.52 4.43 3.89 3.48 3.68 3.21 3.19
8:1 PSNR | 36.04 36.19 34.40 34.09 25.00 24.95 26.12 25.69
’ PQS 3.00 2.94 3.09 2.58 2.83 2.70 2.20 2.25
10:1 PSNR | 34.30 3443 329 32.51 23,71 23.58 25.30 2491
) PQS 2.46 2.35 2.52 2.12 2.79 2.52 1.94 1.88
TABLE VII
MOS FOR8 x 8 DCT AND DWT
Image Peppers Lena Zebra Baboon
CR DCT |(BW-22} DCT |BW-22| DCT |BW-22| DCT |BWwW-22
4:1 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00
10:1 3.43 4.43 3.66 4.24 3.68 4.34 3.58 4.18
30:1 212 | 3.04 1.94 2.65 2.36 2.45 2.08 2.56
50:1 1.33 2.24 1.65 2.15 1.55 2.05 1.75 2.15
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